
 Infrastructure for Parallel Adaptive
Unstructured Mesh Simulations

   M.S. Shephard, C.W. Smith, E.S. Seol, D.A. Ibanez,
Q. Lu, O. Sahni, M.O. Bloomfield, B.N. Granzow

   Scientific Computation Research Center,
Rensselaer Polytechnic Institute

   G. Hansen, K. Devine and V. Leung!
   Sandia National Laboratories"

   K.E. Jansen, M. Rasquin and K.C. Chitale
   University of Colorado

   M.W. Beall and S. Tendulkar
   Simmetrix Inc.

Presentation Outline

   Meshes of multi-million element meshes needed even with the
use of adaptive methods
 Simulations must be run on massively parallel computers with

information (mesh) distributed at all times
 Need an effective parallel mesh infrastructure and associated

utilities to deal with the mesh and its adaptation
   Presentation outline
 Unstructured meshes on massively parallel computers

 Representations and support of a distributed mesh
 Dynamic load balancing
 Mesh adaptation using parallel mesh modification

 Component-based infrastructure for parallel adaptive analysis
 Albany computational mechanics environment and testbed
 Comments on hand-on session materials

2"

Parallel Adaptive Analysis

   Components
 Scalable FE or FV analysis

 Form the system of equations
 Solve the system of equations

 Parallel unstructured mesh infrastructure
 Including means to move entities

 Mesh adaptation procedure
 Driven by error estimates and/or correction indicators
 Maintain geometric fidelity
 Support analysis needs (e.g., maintain boundary layer structure)

 Dynamic load balancing
 Rebalance as needed
 Support predictive methods to control memory use and/or load
 Fast partition improvement (considering multiple entities)

   All components must operate in parallel
 Scalability requires using same parallel control structure for

all steps – partitioned mesh
3"

   Geometry-Based Analysis
 Geometry, Attribute: analysis domain
 Mesh: 0-3D topological entities and adjacencies
 Field: distribution of solution over mesh
 Common requirements: data traversal, arbitrarily

attachable user data, data grouping, etc.
 Complete representation: store sufficient

entities and adjacencies to get any
adjacency in O(1) time

Background

Geometric model Mesh

Mesh!

Part!

Regions!

Edges!

Faces!

Vertices!

4"

Parallel Unstructured Mesh Infrastructure (PUMI)

Geometric model! Partition model!

Distributed mesh!

 Capability to partition mesh to multiple parts per process

i!M"0!

j!M1!

1!P"

0!P"
2!P"

 inter-process part
boundary!

 intra-process part
boundary!

 Proc j! Proc i!

5"

Distributed Mesh Data Structure

Each part Pi assigned to a process
 Consists of mesh entities assigned to ith part.
 Uniquely identified by handle or id plus part number
 Treated as a serial mesh with the addition of part boundaries

 Part boundary: groups of mesh
entities on shared links between
parts
 Part boundary entity: duplicated
entities on all parts for which they
bound with other higher order
mesh entities
 Remote copy: duplicated entity
copy on non-local part

6"

Mesh Migration

   Purpose: Moving mesh entities between parts
 Dictated by operation - in swap and collapse it’s the mesh

entities on other parts needed to complete the mesh
modification cavity

 Entities to migrate are determined based on adjacencies
   Issues
 A function of mesh representation w.r.t. adjacencies, P- set

and arbitrary user data attached to them
 Complete mesh representation can provide any adjacency without

mesh traversal - a requirement for satisfactory performance
 Performance issues

 synchronization, communications, load balance and scalability
 How to benefit from on-node thread communication (all threads in a

processor share the same memory address space)

7"

 Goals: localizing off-part
mesh data to avoid inter-process
communications for
computations

 Ghost: read-only, duplicate
entity copies not on part
boundary including tag data

 Ghosting rule: triplet (ghost dim, bridge dim, # layers)
 Ghost dim: entity dimension to be ghosted
 Bridge dim: entity dimension used to obtain entities to be ghosted

through adjacency
 # layers: the number of ghost layers measured from the part boundary

E.g, to get two layers of region entities in the ghost layer, measured from
faces on part boundary, use ghost_dim=3, bridge_dim=2, and # layers=2

Ghosting

8"

Two-Level Partitioning to Use MPI and Threads

9

  Exploit hybrid architecture of BG/Q, Cray XE6, etc…
  Reduced memory usage

  Approach
 Partition mesh to processes, then partition to threads
 Message passing, via MPI,

between processes
 Shared memory, via pthreads,

within process
 Transparent-to-application use of

pthreads
i!M!0!

j!M1!

1!P!

0!P! 2!P!

 intra-process part
boundary!

Process j!Process i!

 inter-process part
boundary!

Process 1
Process 2

Process 3

Process 4

pthreads!
 !

pthreads!

Pa
rt!

pthreads!
Pi!

pthreads!

9"

Blue Gene/Q Two Level Partition Results

AAA mesh: 2M tets, 32 parts, 2 nodes
SLAC mesh: 17M tets, 64 parts, 4 nodes
Torus mesh: 610M tets, 4096 parts, 256 nodes
Test: local migration, all MPI vs. 1 MPI rank/16 threads per node
Speedup: up to 27%

10

0

2

4

6

8

10

12

14

16

18

20000 40000

se
co

nd
s

Regions migrated

AAA

0

10

20

30

40

50

60

80000 160000

SLAC

0

5

10

15

20

25

30

35

40

80000

Torus

MPI

thread

Dynamic Load Balancing

 Purpose: to rebalance load imbalanced mesh during mesh
modification
 Equal “work load” with minimum inter-process

communications
 Two tools being used
 Zoltan Dynamic Services

supporting multiple dynamic
partitioners with general control
of partition objects and weights

 ParMa – Partitioning using
mesh adjacencies

11"

Dynamic Repartitioning (Dynamic Load Balancing)

Initialize  
Application!

Partition 
Data!

Redistribute  
Data!

Compute  
Solutions  
& Adapt!

Output 
& End!

   Dynamic repartitioning (load balancing) in an application:
 Data partition is computed.
 Data are distributed according to partition map.
 Application computes and, perhaps, adapts.
 Process repeats until the application is done.

   Ideal partition:
 Processor idle time is minimized.
 Inter-processor communication costs are kept low.
 Cost to redistribute data is also kept low.

Static vs. Dynamic: Usage and Implementation

   Static:
 Pre-processor to application.
 Can be implemented serially.
 May be slow, expensive.
 File-based interface

acceptable.
 No consideration of existing

decomposition required.

   Dynamic:
 Must run side-by-side with

application.
 Must be implemented in

parallel.
 Must be fast, scalable.
 Library application interface

required.
 Should be easy to use.
 Incremental algorithms

preferred.
 Small changes in input

result small changes in
partitions.

 Explicit or implicit
incrementally acceptable.

13"

Zoltan Toolkit: Suite of Partitioners

Recursive Coordinate Bisection (Berger, Bokhari)!
Recursive Inertial Bisection (Taylor, Nour-Omid)!

Space Filling Curves  
(Peano, Hilbert)

Refinement-tree Partitioning  
(Mitchell)!

!Graph Partitioning!
ParMETIS (Karypis, Schloegel, Kumar)!
Jostle (Walshaw)

Hypergraph Partitioning & Repartitioning  
(Catalyurek, Aykanat, Boman, Devine,

Heaphy, Karypis, Bisseling)!
PaToH (Catalyurek) 14"

Geometric Partitioners

   Goal: Create parts containing physically close data.
 RCB/RIB: Compute cutting planes that recursively divide work.
 SFC: Partition linear ordering of data given by space-filling curve.

   Advantages:
 Conceptually simple; fast and inexpensive.
 Effective when connectivity info is not available (e.g., in particle

methods).
 All processors can inexpensively know entire decomposition.
 RCB: Regular subdomains useful in structured or unstructured

meshes.
 SFC: Linear ordering may improve cache performance.

   Disadvantages:
 No explicit control of communication costs.
 Can generate disconnected subdomains for

complex geometries.
 Geometric coordinates needed.

Topology-based Partitioners

   Goal: Balance work while minimizing data
dependencies between parts.
 Represent data with vertices of graph/hypergraph
 Represent dependencies with graph/hypergraph edges

   Advantages:
 High quality partitions for many applications
 Explicit control of communication costs
 Much software available

 Serial: Chaco, METIS, Scotch, PaToH, Mondriaan
 Parallel: Zoltan, ParMETIS, PT-Scotch, Jostle

   Disadvantages:
 More expensive than

geometric approaches
 Require explicit dependence info

Partitioning using Mesh Adjacencies (ParMA)

  Mesh and partition model adjacencies represent application data
more completely then standard partitioning graph
 All mesh entities can be considered, while graph-partitioning

models use only a subset of mesh adjacency information.
 Any adjacency can be obtained in O(1) time (assuming use of

a complete mesh adjacency structure).
  Advantages
 Directly account for multiple entity types – important for the

solve process – most computationally expensive step
 Avoid graph construction
 Easy to use with diffusive procedures

  Applications to Date
 Partition improvement to account for multiple entity types –

improved scalability of solvers
 Use for improving partitions on really big meshes 17"

ParMA – Multi-Criteria Partition Improvement

18

  Improved scalability of the solve by accounting for balance of
multiple entity types – eliminate spikes
  Input:
 Priority list of mesh entity types to be balanced (region, face,

edge, vertex)
 Partitioned mesh with communication, computation and

migration weights for each entity
  Algorithm:
  From high to low priority if separated by ‘>’ (different groups)

 From low to high dimension entity types if separated by ‘=’ (same group)
  Compute migration schedule (Collective)
  Select regions for migration

(Embarrassingly Parallel)
  Migrate selected regions (Collective)

Ex) “Rgn>Face=Edge>Vtx” is the user’s input
Step 1: improve balance for mesh regions
Step 2.1: improve balance for mesh edges
Step 2.2: improve balance for mesh faces
Step 3: improve balance for mesh vertices

Mesh element selection

   Example of C0, linear shape function finite elements
 Assembly sensitive to mesh element imbalances
 Sensitive to vertex imbalances they hold the dof

 Heaviest loaded part dictates solver performance
 Element-based partitioning results in spikes of dofs
 Diffusive application of ParMA knocks spikes down –

common for 10% increase in strong scaling

ParMA Application Partition Improvement

element imbalance increased from 2.64% to 4.54%!dof imbalance reduced from 14.7% to 4.92%!

19"

Predictive Load Balancing

  Mesh modification before load balancing can lead to memory
problems - common to see 400% increase on some parts

  Employ predictive load balancing to avoid the problem
 Assign weights based on what will be refined/coarsened
 Apply dynamic load balancing using those weights
 Perform mesh modifications
 May want to do some local migration

120 parts with ~30% of
the average load !

~20 parts with > 200%
imbalance, peak

imbalance is ~430%!

Histogram of element imbalance in
1024 part adapted mesh on Onera M6
wing if no load balancing is applied

prior to adaptation.! 20"

Algorithm
 Mesh metric field at any point P is decomposed into three orthogonal

direction (e1,e2,e3) and desired length (h1,h2,h3) in each
corresponding direction.

  The volume of desired element (tetrahedron) : h1h2h3/6
  Estimate number of elements to be generated:

  “num” is scaled to a good range before it is specified as a weight to

graph nodes

Predictive Load Balancing

General Mesh Modification for Mesh Adaptation

   Goal is the flexibility of remeshing with added advantages
  Supports general changes in mesh size including anisotropy
  Can deal with any level of geometric domain complexity
  Can obtain level of accuracy desired
  Solution transfer can be applied incrementally

   Given the “mesh size field”:
  Drive the mesh modification loop at the element level

 Look at element edge lengths and shape (in transformed space)
  If not satisfied select “best” modification
 Elements with edges that are too long must have edges split or swapped out
 Short edges eliminated

  Continue until size and shape is satisfied or no more improvement possible

   Determination of “best” mesh modification
  Selection of mesh modifications based on satisfaction of the element

requirements
  Appropriate considerations of neighboring elements
  Choosing the “best” mesh modification 22"

initial mesh"
(20,067 tets)"

adapted mesh"
(approx. 2M tets)"

Mesh Adaptation by Local Mesh Modification

   Controlled application of mesh modification operations including
dealing with curved geometries, anisotropic meshes

   Base operators
  swap
  collapse
  Split
  move

   Compound operators chain single step operators
  Double split collapse operator
  Swap(s) followed by collapse operator
  Split, then move the created vertex
  Etc.

Edge collapse"Edge split" face split"

Double split collapse to remove the red sliver"

23"

  Moving refinement vertices to boundary required mesh modification
(see IJNME paper, vol58 pp247-276, 2003)

  Coarse initial mesh and the mesh after multiple refinement/coarsening

  Operations to move refinement vertices

Accounting for Curved Domains During Refinement

x!
y! z!

Iterations of
adaptations

of
vertices to
be snapped

of vertices
snapped by a

reposition

of vertices
snapped by local

modifications

of vertices snapped
requiring local re-

triangulations
1 342 204 136 2
2 485 369 110 6
3 340 286 52 2
4 74 34 40 -
5 26 3 23 - 24"

Matching Boundary Layer and Interior Mesh

   A modification operation on any layer is propagated
through the stack and interface elements to preserve
attributes of layered elements.

25"

26!

Curved Elements for Higher-Order Methods!

   Requirements"
 Coarse, strongly graded meshes with curved elements"
 Must ensure the validity of curved elements"
 Shape measure for curved elements" "" "

" - standard straight sided measure in 0-1 format"
" - 0-1 curved measure (det. of Jacobian variation)"

 Element geometric order and level of geometric approximation
need to be related to geometric shape order"

 Steps in the procedure (for optimum convergence rate)"
 Automatic identification and linear mesh at singular features"
 Generate coarse surface mesh accounting for the boundary layers"
 Curve coarse surface mesh to boundary"
 Curve graded linear feature isolation mesh"
 Generate coarse linear interior mesh"
 Modify interior linear mesh to ensure validity with respect to  

the curved surface and graded linear feature isolation mesh"

€

Q =Qs ×Qc

€

Qs

€

Qc

27!

Example p-Version Mesh!

 Isolation on model edges"

Straight-sided mesh with gradient"

Curved mesh with gradient"

   Parallelization of refinement: perform on each part and
synchronize at inter-part boundaries.

   Parallelization of coarsening and swapping: migrate cavity (on-
the-fly) and perform operation locally on one part.

   Support for parallel mesh modification requires update of
evolving communication-links between parts and dynamic mesh
partitioning.

Parallel Mesh Adaptation

28"

Boundary Layer Mesh Adaptation

  Boundary Layer stacks in P-sets
  Mesh entities contained in a set are unique,

and are not part of the boundary of any
higher dimension mesh entities

  Migrate a set and constituting entities to
another part together

29"

Parallel Boundary Layer Adaptation!

Initial mesh of 2k elements"

Final mesh of 210k elements"

Refinement and node repositioning"
with limited coarsening and swapping"

30"

Define desired element size and shape distribution following mesh metric"

Mesh Adaptation to an Anisotropic Mesh Size Field!

:,, 321 eee  Unit vectors associated with
three principle directions"

:,, 321 hhh Desired mesh edge lengths  
in these directions"

Ellipsoidal in physical space transformed to
normalized sphere!

Transformation matrix field T(x,y,z)"

Decomposition of boundary layers into layer surfaces (2D) and a thickness (1D) mesh"
In-plane adaptation uses projected Hessian, thickness adaptation based on BL theory"

31"

Example 2 – M6 Wing

 Overall mesh

 Close-up to see

adaptation in the
boundary layer
including intersection
with shock

Example of Anisotropic Adaptation

33"

34!

Example!

 "Surface of adapted mesh for human abdominal aorta

Component-Based Construction of Adaptive Loops

   Building on the unstructured mesh infrastructure
 Employs a component-based approach interacting through

functional interfaces
 Being used to construct parallel adaptive loops for codes
 Recently used for a 92B element mesh on ¾ million cores

Overall geometry and slice plane shown! 11B element mesh! 35"

Correction
Indicator!

Mesh-Based Analysis

Complete Domain
Definition

Physics and Model Parameters

Component-Based Unstructured Mesh Infrastructure

Parallel Infrastructure!
 Domain Topology

Mesh Topology and Partition Control

Dynamic Load Balancing

Input Domain Definition

non-manifold
model construction

mesh with fields

mesh

with fields

discretization
parameters

solution
 fields

physical parameters

process
parameters

PDE’s and
discretization
methods

Postprocessing/visualization!

attributed
 mesh and

 fields

Mesh Generation
and Adaptation geometric

interrogation
attributed non-

manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

Mapping data between component data structures and
executing memory management
 Component integrated using functional interfaces
 Change/Add components with minimal development costs

Comparison of file-based and in-memory transfer for
PHASTA
 85M element mesh on Hopper
 On 512 cores file based took 49 sec and in-memory 2 sec
 On 2048 cores file based took 91 sec and in-memory 1 sec

In-Memory Adaptive Loop

Adaptive Loop
Driver PHASTA

Mesh
Adaptation

37!
Compact Mesh and

Solution Data
Mesh Data

Base
Solution
Fields

Field
API

Field
API

Control! Control!

Field
Data!

Field
Data!

37

Anisotropic
correction
indication!

PHASTA

Parasolid

Physics and Model Parameters

Active Flow Control Simulations

PUMI!
GMI

FMDB and Partition Model

Zoltan and ParMA

Parasolid

mesh with fields

Element order
B’dry layer info.

flow field

physical parameters

actuator
parameters

NS with turbulence
Finite elements

ParaView!

attributed
 mesh and

 fields

MeshSim and
MeshAdapt or

MeshSim Adapt geometric
interrogation

attributed non-
manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

mesh

with fields

Example of Scalable Solver: PHASTA

   Excellent strong scaling
 Implicit time integration
 Employs the partitioned mesh for

system formulation and solution
 Specific number of ALL-REDUCE

communications also required
 Strong Scaling Results

Mesh Adaptivity for Synthetic Jets (O. Sahni)

   fact = 2,300Hz
α  = 00

Re ~ O(100,000)

40

Goal Oriented
Error

Estimation!

FUN3D from NASA

Parasolid or
GeomSim

Physics and Model Parameters

Aerodynamics Simulations

PUMI and/or Simmetrix!
GMI or GeomSim

FMDB and Partition Model or MeshSim

Zoltan and ParMA

Parasolid

mesh with fields

FV method
B’dry layer info.

flow field

physical parameters

process
parameters

NS
Finite Volumes

ParaView!

attributed
 mesh and

 fields

MeshSim and
MeshAdapt or

MeshSim Adapt geometric
interrogation

attributed non-
manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

mesh

with fields

Application Result - Scramjet Engine!

42

Initial Mesh

Adapted Mesh

Anisotropic
correction
indication!

PHASTA

Parasolid

Physics and Model Parameters

Adaptive Two-Phases Flow

PUMI!
GMI

FMDB and Partition Model

Zoltan and ParMA

Parasolid

mesh with fields
Zero level set flow field

physical parameters

actuator
parameters

NS and level sets
Finite elements

ParaView!

attributed
 mesh and

 fields

Mesh Generation
and Adaptation geometric

interrogation
attributed non-

manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

mesh

with fields

Adaptive Simulation of Two-Phase Flow!
"
 Two-phase modeling using level-sets  

coupled to structural activation"
 Adaptive mesh control –  

reduces mesh required  
from 20 million elements  
to 1 million elements"

Projection-
based method!

ACE3P from SLAC

ACIS

Physics and Model Parameters

Electromagnetics Analysis

PUMI and/or Simmetrix!
GMI or GeomSim

FMDB and Partition Model or MeshSim

Zoltan and ParMA

ACIS

mesh with fields

Element order
Integration rule stresses

physical parameters

process
parameters

Electromagnetics
Edge elements

ParaView!

attributed
 mesh and

 fields

MeshSim and
MeshAdapt or

MeshSim Adapt geometric
interrogation

attributed non-
manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

mesh

with fields

   Adaptation based on
 Tracking particles

(needs fine mesh)
 Discretization errors

   Full accelerator models
 Approaching 100 cavities
 Substantial internal structure
 Meshes with several

hundred million elements

Adaptive Control Coupled with PIC Method

46

Albany Multiphysics Code Targets Several Objectives

 A finite element based application development environment
containing the "typical" building blocks needed for rapid
deployment and prototyping

 A mechanism to drive and demonstrate our Agile Components
rapid software development vision and the use of template-
based generic programming (TBGP) for the construction of
advanced analysis tools

 A Trilinos demonstration application. Albany uses ~98 Sandia
packages/libraries.

 Provides an open-source computational mechanics
environment and serves as a test-bed for algorithms under
development by the Laboratory of Computational Mechanics
(LCM) destined for Sandia's production codes

Main"
"

PDE Assembly"
"
"
"
"

Nonlinear Solvers"

Field Manager"

Discretization"

Albany"
Glue Code"

Nonlinear
Model

Nonlinear"
Transient"

Optimization"
UQ"

Analysis Tools"
"
"
"

Iterative"

"
"

Linear Solvers"

"
"
"

Multi-Level"

M"
"
"
"

Mesh Tools"
"

"
"
"
"
"

Mesh"
Adapt"

"
"

Problem
Discretization

ManyCore Node

Multi-Core"
Accelerators"

Application

Linear Solve

Input Parser"

Node Kernels"
"
"
"

Regression Testing"

Version Control"
Build System"

Libraries" Interfaces Software Quality Tools" Existing Apps"

PDE Terms"

Load "
Balancing"

Albany – Agile Component Architecture

PDE Eqs"

Phys-Based Prec."
Sensitivities"

Field Manager"
Discretization Library"

Remeshing"

UQ Solver"

Nonlinear Solver"
Time Integration"

Optimization"

Objective Function"

Local Fill"

Mesh Database"

Mesh Tools"

I/O Management"

Input File Parser"
Utilities"

UQ (sampling)"
Parameter Studies"

Solution Control"

Mesh I/O"

Optimization"

Geometry Database"

Discretizations"

Derivative Tools"

Adjoints"
UQ / PCE"

Propagation"

Constraints"
Error Estimates"

Continuation"

Constrained Solves"

Sensitivity Analysis"
Stability Analysis"

V&V, Calibration"
Parameter List"

Feature Extraction"
Verification!
Visualization"

PostProcessing"

Adaptivity"

Model Reduction"
Memory Management"

System Models"

MultiPhysics Coupling"

OUU, Reliability"

Communicators"

MultiCore"
Parallelization Tools"

Partitioning"
Load Balancing"

Analysis Tools"
 (black-box)!

Physics Fill"

Composite Physics"

Data Structures"

Direct Solvers"

Linear Algebra"

Architecture-"
Dependent Kernels"

Preconditioners"

Iterative Solvers"

Eigen Solver"

System UQ"

Analysis Tools"
 (embedded)!

Matrix Partitioning"

Inline Meshing"

MMS Source Terms"

Grid Transfers"
Quality Improvement"

Mesh Database"

Solution Database"

Runtime Compiler"

Derivatives"

Regression Testing"

Bug Tracking"

Version Control"
Software Quality"

Porting"

Performance Testing"
Code Coverage"

Mailing Lists"

Release Process"

Unit Testing"

Web Pages"

Build System"
Backups"

Agile Toolbox: Capabilities!

Verification Tests"

Search"
Modification Journal"
Checkpoint/Restart"

DOF map"

Mulit-Core"
Accelerators"

Material Models"

49"

Structural Analysis for Integrated Circuits on BG/Q

Projection-
based method!

Albany/Trilinos ParaView!

GeomSim

Physics and Model Parameters

PUMI and/or Simmetrix!
GMI or GeomSim

FMDB and Partition Model or MeshSim

Zoltan and ParMA

gdsII layout/process data

gds2 to Parasolid
Parasolid to GeomSim

mesh with fields

Element order
Integration rule stresses

attributed
 mesh and

 fields

physical parameters

process
parameters

Solid mechanics
Finite elements MeshSim and

MeshAdapt or
MeshSim Adapt geometric

interrogation
attributed non-

manifold topology

mesh
size
field

Solution 
Transfer!

mesh

with fields

mesh

with fields

From Design Data to Geometry for Meshing

   Need complete non-manifold solid model for:
 Automatic mesh generation
 Supporting high-level problem specification
 Maintaining geometric fidelity during mesh adaptation

   Tool to take design/process data and create solid model
 Basic design data in 2-D layouts (gdsII/OASIS)
 3rd dimension must be added
 Process “knowledge” critical for constructing full geometry
 Set structures and methods build solid model using modeling

kernel operations

51"GDS2 layout!
Solid model – constructed from
layout and process information! Mesh!

Parallel Mesh Generation

All procedures are fully automatic, user not required to partition
Surface Meshing
 Distributes model faces between processes
 Requires # model faces > # processors to

scale. In practice this isn’t an issue

Volume Meshing
 Load balancing done through spatial decomposition
 Mesh interior to each part is created, then repartitioning done

to mesh unmeshed areas between part boundaries
Mesh Improvement
 Local operations done

on each part
 Local migrations done

between parts to improve
elements on part boundaries

52"

Parallel Geometry

Problems
 CAD kernels not available on computers like BlueGene
 Even if they were, keeping full geometric model on each

processor doesn’t scale
  Simmetrix’ solutions
 Geometry representation that can be used anywhere
 Geometry is able to be

distributed in parallel
 Only model entities needed for

mesh on each processor are on
that processor. Model entities
migrate with mesh

 Both discrete and CAD
geometry supported

53"

Parallel Mesh Generation Results

 Scaling parallel mesh
generation is difficult
 No a-priori knowledge of how

to partition
 Partitioning must be determined

as meshing proceeds
 Results for volume meshing

0

20

40

60

80

100

120

0 50 100 150 200 250

M
in

ut
es

Number of Elements (Milions)

Parallel Volume Meshing

1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

32 Proc

64 Proc
0"

50"

100"

150"

200"

250"

0" 200" 400" 600" 800" 1000" 1200"

M
in
ut
es
(

Number(of(Elements((Milions)(

Parallel(Volume(Meshing(

1"Proc"

2"Proc"

4"Proc"

8"Proc"

16"Proc"

32"Proc"

64"Proc"

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

0.2"

1" 2" 4" 8" 16" 32" 64"

M
ill
io
ns
'o
f'r
eg
io
ns
'p
er
'p
ro
ce
ss
or
'm

in
ut
e'

Number'of'Processors'

Parallel'Volume'Meshing'7'Efficiency'

54"

Small Parallel Adaptive Albany Example

55"

Initial mesh partition!Initial mesh!

Adapted mesh!

Hands-on Exercise Outline

   Simmetrix Mesh Generation
 Video demonstrating Simmetrix mesh generation tools

   PUMI
 Air foil with actuator

 Simmetrix GeomSim Advanced
Parametric model generated from
Parasolid model

 Initial mesh has 93e3 elements and 2 parts
 Partition via Zoltan

 Geometric and graph based (ParMetis)
 Partition to 512 parts on 128 cores

56"

Hands-on Exercise Outline

   PUMI (cont.)
 Parallel Mesh Adaptation

 Adapt to 731e3 elements
with tag based refinement

 Adapt from 731e3 to
21e6 elements with an
analytic size field on 512
cores
  Predictive load balancing

 New mesh vertices
‘snap’ to Simmetrix
model

 Visualization with ParaView
 Video demonstrating mesh

adaptation concepts

57"

Hands-on Exercise Outline

   Albany
 Baseline parallel adaptive elasticity calculation in Albany
 Visualization with ParView
 Preconditioner control
 Adaptive elastic deformation

58"

PUMI: Parallel Unstructured Mesh Infrastructure

   Parallel Capabilities
 Unstructured 3D meshes w/ mixed element topology

 Support for higher order elements
 Direct relation to geometric model

 Parasolid, ACIS, and discrete models supported
 Solution based mesh adaptation
 Static and Dynamic partitioning

 Integration with Zoltan and ParMA
 Ghosting
 Functional interfaces for coupling to analysis codes

 Existing coupling with PHASTA, Albany/Trilinos, NASA FUN-3D,
and SLAC ACE3P

   Download
 https://redmine.scorec.rpi.edu/projects/pumi

   More Information
 https://www.scorec.rpi.edu/pumi

59"

Zoltan Toolkit: Suite of Partitioners

   Capabilities
 Dynamic load balancing and static data partitioning

 Geometric, graph-based, hypergraph-based
 Interfaces to ParMETIS, PT-Scotch, PaToH

 Graph coloring
 Graph/matrix fill-reducing or locality-preserving ordering
 iZoltan interface supports ITAPS mesh interfaces
 Coupled to PUMI

   Download
 http://trilinos.sandia.gov

   More Information
 http://www.cs.sandia.gov/Zoltan/
 kddevin@sandia.gov

60"

ParMA: Partitioning Using Mesh Adjacencies

   Parallel Capabilities
 Dynamic partitioning procedures using mesh adjacencies

and partition model information
 Any mesh adjacency can be obtained in O(1) time (assuming use of a

complete mesh adjacency structure).
 Partition improvement to account for multiple entity types

 Improved scalability of solvers by reducing peak entity imbalance(s)
 Avoid graph construction – low memory cost

 Predictive load balancing for mesh adaptation
 Avoid memory exhaustion

 Coupled with PUMI
   Download (as part of PUMI)
 https://redmine.scorec.rpi.edu/projects/pumi

   More Information
 https://redmine.scorec.rpi.edu/projects/parma 61"

MeshAdapt: Unstructured Mesh Adaptation

   Capabilities
 Parallel adaptation of unstructured 3D meshes w/ mixed

element topology
 Supports general changes in mesh size including anisotropy

 Typically driven by a solution field based size field.
 Can deal with any level of geometric domain complexity
 Can obtain level of accuracy desired
 Solution transfer can be applied incrementally

 Callbacks for application defined transfer procedures.
 Coupled with PUMI

   Download
 https://redmine.scorec.rpi.edu/projects/pumi

   More Information
 https://www.scorec.rpi.edu/meshadapt/

62"

Albany: Multiphysics Simulation Environment

   Capabilities
 A finite element based application development environment

for rapid deployment of analysis capabilities.
  AgileComponents and TBGP enables rapid application and feature

development
  Linked to Trilinos linear and nonlinear solvers for scalability
  AD Jacobian, derivatives for SA and UQ
  LOCA for continuation, stability analysis, bifurcation tracking
  160+ example physics applications in test suite

   Download
 https://software.sandia.gov/albany

   More Information
 Glen Hansen [gahanse@sandia.gov]
 https://software.sandia.gov/albany/gettingStarted.pdf
 https://redmine.scorec.rpi.edu/projects/fmdb/wiki/

Building_Albany_and_PUMI_from_Scratch 63"

Closing Remarks

   A set of tools to support parallel unstructured mesh
adaptation have been developed
 Parallel mesh infrastructure
 Dynamic load balancing
 Mesh adaptation
 Support for heterogeneous parallel computers under

development
Tools used to develop parallel adaptive simulations
 Both unstructured mesh finite element and finite volume

procedures being developed
 Multiple problems areas – CFD, MHD, EM, solids
 Can account for semi-structured mesh regions, evolving

geometry, high order curved meshes
   More Information: shephard@rpi.edu

64"

